FROM
http://www.simmtester.com/page/news/showpubnews.asp?title=DDR2+DIMM+SPD+Definition&num=139
Friday, August 25, 2006
Introduction
Since I wrote “Understanding DDR Serial Presence Detect (SPD) Table” in 2003, I have been getting a lot a feedback from readers. Some of you told me that you are using this article to train your employees,
and to introduce the mysteries SPD concept to your customers. I feel honored by your responses.
Lately, some of you had encouraged me to add the DDR2 SPD Table. Since the DDR2 DIMM has taken mainstream recently, I think this is the time to add an article for the DDR2 SPD Table. Due to the many more years of development, the DDR2 SPD table has definitely got more sophisticated than the original DDR SPD table. Your attention is required to understand and follow through. I will try to use as much layman language, as I can to accommodate you all.
Picture of a 8pin-SPD EEPROM made by Atmel
Serial Presence Detect (SPD) data is probably the most misunderstood subject in the memory module industry.
Most people only know it as the little Eprom device on the DIMM that often kept the module from working properly in the computer. On the contrary, it is quite the opposite. The SPD data actually provide vital information to the
system Bios to keep the system working in optimal condition with the memory DIMM. This article attempts to guide you through the construction of an SPD table with “Turbo-Tax” type of multiple choices questions. I hope you’ll find it interesting and useful.
Byte 0
Number of Serial PD Bytes written during module production
This field describes the total number of bytes used by the module manufacturer for the SPD data and any (optional)
specific supplier information. The byte count includes the fields for all required and optional data.
For most manufacturers, they do not insert optional data and the resulting data (in hex) would normally be:
128Byte: 80h 256Byte: FFh
Byte 1Total number of Bytes in Serial PD device
This field describes the total size of the serial memory used to hold the Serial Presence Detect data,
device used is usually 128 Bytes or 256 Bytes with 256 Bytes as the most common.
256 Byte (24C02)
(34C02) with Software Write Protect function
(34C02B)with Reversible Software Write Protect function : 08h
128 Byte (24C01): 07h
Byte 2
Fundamental Memory Type
This refers to the DRAM type. In this case, we are only dealing with DDR2 SDRAM.
DDR2 SDRAM: 08h
Byte 3
Number of Row Addresses on this assembly
This relates to the DRAM size as well as the Refresh scheme of the DRAM.
The best way to discover this is to use the AutoID function of the CST DIMM tester.
You would first run the AutoID on the tester. You then use the [Edit] [AdrDat] function to display the Row and Column Address counts.
15: 0Fh 14: 0Eh 13: 0Dh 12: 0Ch
Byte 4
Number of Column Addresses on this assembly
This relates to the DRAM size as well as the Refresh scheme of the DRAM.
The best way to discover this is to use the AutoID function of the CST DIMM tester.
You would first run the AutoID on the tester. You then use the [Edit] [AdrDat] function
to display the Row and Column Address counts. 13: 0Dh 12: 0Ch 11: 0Bh 10: 0Ah 09: 09h
Byte 5
Module Attributes - Number of Physical Banks on DIMM, Package and Height
This is a multi-purpose field that involves calculations and bit combination.
A Flash program combine them together and give you an automatic result after
you have selected the different attributes.
Byte 6
Module Data Width of this assembly
This refers to the number of data bit width on the module. For a standard 8 byte DIMM, 64 bits
would be most common while an 8 byte ECC module would have 72 bits. Some special module might
even have up to 144 bits. In any case, a CST tester Auto ID function would tell you this number
in plain English.
32 bit: 20h 64 bit: 40h 72 bit: 48h 144 bit: 90h
Byte 7
Reserved
Not available: 00h
Byte 8
Voltage Interface Level of this assembly
This refers to the power supply voltage Vdd of the DIMM. Standard DDR2 SDRAM module would be SSTL 1.8V
1.8V DDR2: 05h Recommended Default
Byte 9
SDRAM Device Cycle time
This commonly referred to the clock frequency of the DIMM. Running at its specified CL latency.
5.0 ns (400Mhz): 50h 3.75 ns (533Mhz): 3Dh 3.0 ns (667Mhz): 30h2.5 ns (800Mhz): 25h
Byte 10
SDRAM Device Access from Clock (tAC)
This byte defines the maximum clock to data out time for the SDRAM module. You can normally
read off the tAC specification on the Timing Parameter table.
+/-0.6 ns: 60h+/-0.5 ns: 50h+/-0.45 ns: 45h+/-0.40 ns: 40h
Byte 11
DIMM Configuration Type
This is to identify the DIMM as ECC, Parity, or Non-parity. Normally non-parity is related to
64 bit module, Parity and ECC are related to 72 bit or higher memory bit width on the module.
NonECC: 00h
ECC: 02hAddress/Command Parity with ECC: 06h
Byte 12
Refresh Rate
This byte describes the module's refresh rate and if it is self-refreshing or non-self refreshing.
Today, most standard modules would be capable of self-refreshing. The refresh time is easily read
from the DRAM manufacturer data sheet. Refresh time can be listed in two different ways.
1. In Refresh Interval Time. For example: 15.6usec. or 7.8usec.
2. In milli-seconds per x Refresh Cycles. For example: 62.4ms in 8K refresh
This can be converted back into refresh interval time with the equation:
Refresh Interval = Total Refresh Period/number of refresh cycles.
15.6 us Self-refresh (4K): 80h 7.8 us Self-refresh (8K): 82h 15.6 us non Self-refresh : 00h 7.8 us non Self-refresh : 02h
Byte 13
Primary SDRAM Width
This refers to the bit width of the primary data SDRAM.
For a standard DIMM module. 4 bits: 04h 8 bits: 08h 16 bits: 10h
Byte 14
Error Checking SDRAM Width
This refers to the bit width of the error checking DRAM. For a standard module,
it is either no ECC bit, or 8 bits on a regular 8 byte module. It can also be 16 bits on
a 144 bit (16 byte) module.
No-ECC: 00h 8bits: 08h 16bits: 10h
Byte 15
Reserved
Not available: 00h
Byte 16
Burst Lengths Supported
This is indicates the burst length supported. In DDR2, standard DRAM are all 4, 8 burst supported.
4, 8 Burst length supported: 0Ch
Byte 17
Number of Banks on SDRAM Device
This is referring to the internal bank on the DRAM chip. All modern DDR2 chips under 1Gbit have
4 internal banks. For chips at 1Gbit or above, they have 8 internal banks.
4 Internal Banks: 04h 8 Internal Banks (for 1Gb or 2Gb chips only): 08h
Byte 18
CAS Latency (CL)
This refers to the all the different Cas Latency supported by your chip. This can vary with the
frequency you operate your DIMM. This number can be read off your DRAM data sheet.
CL=3 and 4 supported: 18h
CL=4 and 5 supported: 30h
CL=5 and 6 supported: 60h
CL=5 supported: 20h
CL=6 supported: 40h
Byte 19
DIMM Mechanical Characteristics
This defines the module thickness where the maximum thickness includes all assembly parts: devices,
heat spreaders, or other mechanical components. This information together with the DIMM type, allows
the system to adjust for thermal operation specifications.
Byte 20DIMM type information
This byte identifies the DDR2 SDRAM memory module type.
Each module type specified in this Byte 20 defines a unique index for module thickness specified in Byte 19,
which may be used in conjunction with thermal specifications in Bytes 21 and 47-61 to adjust system operation
conditions based on installed modules.
Undefined 00h
Regular Registered DIMM: 01h
Regular Unbuffered DIMM: 02h
SO-DIMM: 04h
Micro-DIMM: 08h
Mini-Registered DIMM: 10h
Mini-Unbuffered DIMM: 20h
Byte 21
SDRAM Module Attributes
This byte involves 4 main items. Bit 0-1 signifies the number of registers on the DIMM. Bit 2-3 signifies
the number of PLL’s on the DIMM. Bit 4 indicates if any on board FET switch is enabled. Bit 6 indicates
if an analysis probe is installed. In most cases, Bit 4 and Bit 6 are not used.
The resulting hex code is calculated as follows:
0 PLL chip and 1 Register chip 00h
0 PLL chip and 2 Register chip 01h1 PLL chip and 1 Register chip 04h1 PLL chip and 2 Register chip 05h
2 PLL chip and 1 Register chip 08h
2 PLL chip and 2 Register chip 09h
Byte 22
SDRAM Device Attributes –General
This byte is a multi-purpose byte. It includes PASR (Partial Array Self Refresh) , 50 ohm ODT enable and
also support of Weak Driver. The resultant hex code is calculated based on the selection you made.
Supports PASR Supports 50 ohm Supports weak driver HEX
No No No 00hNo No Yes 01h
No Yes No 02h
No Yes Yes 03h
Yes No No 04h
Yes No Yes 05h
Yes Yes No 06h
Yes Yes Yes 07h
Byte 23
SDRAM Min Clock Cycle at CLX-1
This is referred to the speed (or frequency) the DRAM can run at when the Cas Latency
is reduced by 1 clock. This data can be looked up from the datasheet of the DRAM.
This is usually listed at the first page of the data sheet where it mentioned highest
frequency it can run at a certain Cas latency setting.
De-rated latency
3.0ns (667 Mhz): 30h
3.75 ns (533Mhz) : 3Dh
5.0 ns (400Mhz) 50h
Undefined: 00h
Byte 24
Max Data Access Time(tAC) at CLX-1
This is referred to DQ output access time from CK/CK* at when the Cas Latency is reduced by 1 clock.
This data can be looked up from the datasheet of the DRAM. This is usually listed as tAC on the data
sheet where it mention maximum frequency it can run at a certain CAS latency setting.
+/-0.45ns: 45h +/-0.5 ns: 50h +/-0.6 ns: 60h Undefined: 00h
Byte 25
SDRAM Min Clock Cycle at CLX-2
This is referred to the speed the DRAM can run at when the Cas Latency is forced to reduce by two notches.
This data can be looked up from the datasheet of the DRAM. This is usually listed at the first page of the
data sheet where it mentioned the frequency it can run at a certain Cas latency setting.
3.75 ns (533Mhz): 3Dh 5.0 ns (400Mhz): 50h Undefined: 00h
Byte 26
Max Data Access Time(tAC)CLX-2
This is referred to DQ output access time from CK/CK* at when the Cas Latency is reduced by 2 clock.
This data can be looked up from the datasheet of the DRAM. This is usually listed as tAC on the data
sheet where it mention maximum frequency it can run at a certain CAS latency setting.
+/-0.45ns: 45h +/-0.5 ns: 50h +/-0.6 ns: 60h
Byte 27 Minimum Row Pre-charge Time (tRP)
This is tRP min read off the DRAM data sheet.
15 ns: 3Ch
Byte 28
Minimum Row to Row Access Delay (tRRD)
This is the tRRD min time read off the DRAM data sheet.
(x4,x8) 7.5ns: lEh (x16) 10 ns: 28h
Byte 29
Minimum Ras to Cas Delay (tRCD)
This is the tRCD min time read off the DRAM data sheet
15 ns: 3Ch
Byte 30
Minimum Active to Pre-charge Time (tRAS)
This is the tRAS min time read of the DRAM data sheet.
40 ns: 28h (For DDR2 533/400Mhz)
39 ns 27h (For DDR2 667 Mhz)
Byte 31
Module Bank Density
This refers to the Mega-Byte in each physical bank (per rank) on the DIMM.
For example: if a 256MB module has two physical banks, then each physical bank
should have 128MB.
128MB: 20h 256MB: 40h 512MB: 80h
1G: 01h 2G: 02h 4G: 04h
Byte 32
Address and Command Input Setup Time Before Clock (tIS)
This refers to the time of the address and command lines have to occur before the
next clock edge. It is labeled as tIS min in the case of DDR2.
DDR2 (tIS) 0.2ns: 20h 0.25 ns: 25h 0.30 ns: 30h 0.35 ns: 35h
Byte 33
Address and Command Input Hold Time After Clock (tIH)
This refers to the period of time the address and command lines have to hold after
the last clock edge has appeared. It is labeled as tIH min in the case of DDR2.
0.275 ns: 27h 0.325ns: 32h 0.375 ns: 37h 0.475 ns: 47h
Byte 34
SDRAM Device Data/Data Mask Input setup Time Before Data Strobe (tDS)
This refers to the time of the Data and Data Mask lines have to occur before the
next clock edge. It is labeled as tDS min in the case of DDR2.
DDR2(tDS) 0.05ns: 05h 0.10 ns: 10h 0.15 ns: 15h
Byte 35
Address and Command Input Hold Time After Clock (tDH)
This refers to the period of time the Data and Data Mask lines have to hold after
the last clock edge has appeared. It is labeled as tDH min in the case of DDR2.
DDR2(tDH)0.175ns: 17h 0.225 ns: 22h 0.275 ns: 27h
Byte 36
Write recovery time (tWR)
This byte describes the write recovery time(tWR)min
15.0 ns: 3Ch
Byte 37
Internal write to read command delay (tWTR)
This byte describes the internal write to read command delay (tWTR)min
7.5 ns: 1Eh 10.0 ns: 28h
Byte 38
Internal read to pre-charge command delay (tRTP)
This byte describes internal read to precharge command delay
(tRTP) 7.5 ns: 1Eh
Byte 39
Memory Analysis Probe Characteristics
This byte describes various functional and parametric characteristics of the memory
analysis probe connected to this DIMM slot. These characteristics may be consulted
by the BIOS to determine proper bus drive strength to account for additional bus
loading of the probe. It also describes functional characteristics of the probe that
may be used to configure the memory controller to drive proper diagnostic signals to
the probe, such as via the TEST,NC pin
Not available: 00h Default value if probe is not described
Byte 40
Extension of Byte 41 tRC and Byte 42 tRFC
This byte serves as an extension when Byte 41 or Byte 42 has run out of space to
accommodate the bigger value
When tRFC (byte 42) is 127.5ns, byte 40 is: 06hWhen tRFC (byte 42) is 327.5ns, byte 40 is: 07hWhen tRC (byte 41) is 63.75ns, byte 40 is: 50hWhen tRC (byte 41) is 65ns, byte 40 is: 00h
Byte 41
Minimum Active to Active Auto Refresh Time (tRCmin)
53ns: 35h 54ns: 36h 55 ns: 37h 60 ns: 3Ch
63.75ns: 8Eh 65ns: 41h
Byte 42
Minimum Auto Refresh to Active Auto Refresh Time (tRFC)
This byte identifies the minimum Auto-Refresh to Active/Auto-Refresh Command Period (tRFC).
(256Mb)75 ns: 4Bh (512Mb)105 ns: 69h
(1Gb) 127.5ns: 7Fh (2Gb) 195ns: C3h
(4Gb) 327.5ns: 47h
Byte 43
Maximum Device Cycle time (tCKmax)
8 ns: 80h
Byte 44
Maximum Skew Between DQS and DQ (tDQSQ)
Maximum DQS tolerance.
0.24 ns: 18h 0.30 ns: 1Eh 0.35 ns: 23h
Byte 45
Maximum Read DataHold Skew Factor (tQHS)
Maximum DOS and DO window tolerance.
0.34 ns: 22h 0.40 ns: 28h 0.45 ns: 2Dh
Byte 46
PLL Relock Time
This refers to the lock time on the PLL IC used in the registered module.
You can read this off the PLL device datasheet.
Undefined: 00h 8us: 08h 10us: 0Ah
12us: 0Ch 15 us: 0Fh
Byte 47 to Byte 61
These bytes describe the thermal characteristic of the memory chips and the logic
chips used on the module. These are complex thermal data used in calculating the
thermal throttling of the microprocessor speed under overstress conditions. In most systems,
these data are ignored (or not available).
Byte 47
Tcasemax
Bits 7:4: Tcasemax Delta, the baseline maximum case temperature is 85 OC. Bits 3:0: DT4R4W Delta.
Not available: 00h
Byte 48
Psi T-A DRAM
Thermal resistance of DRAM device package from top (case) to ambient (Psi T-A DRAM)
Not available: 00h
Byte 49
DTO/Tcase Mode Bits
Bits 7:2:Case temperature rises from ambient due to IDDO/activate-pre- charge operation minus 2.8 OC
offset temperature. Bit 1: Double Refresh mode bit. BitO High Temperature self-refresh rate support
indication
Not available: 00h
Byte 50
DT2N/DT2Q
Case temperature rises from ambient due to IDD2N/precharge standby operation for UDIMM and due to
IDD20/precharge quiet standby operation for RDIMM.
Not available: 00h
Byte 51
DT2P
Case temperature rises from ambient due to IDD2N/precharge standby operation for UDIMM and due to
IDD20/precharge quiet standby operation for RDIMM.
Not available: 00h
Byte 52
DT3N
Case temperature rises from ambient due to IDD2P/precharge power-down operation
Not available: 00h
Byte 53
DT3Pfas
Case temperature rises from ambient due to IDD3P Fast PDN Exit/active power-down with Fast PDN
Exit operation
Not available: 00h
Byte 54
DT3Pslow
Case temperature rises from ambient due to IDD3P Slow PDN Exit/active power-down with Slow PDN
Exit operation
Not available: 00h
Byte 55
DT4R/Mode Bit
Bits 7:1: Case temperature rises from ambient due to IDD4R/page open burst read operation.
Bit 0: Mode bit to specify if DT4W is greater or less than DT4R
Not available: 00h
Byte 56
DT56
Bits 7:1: Case temperature rises from ambient due to IDD4R/page open burst read operation.
Bit 0: Mode bit to specify if DT4W is greater or less than DT4R
Not available: 00h
Byte 57
DT7
Case temperature rise from ambient due to IDD7/bank interleave read mode operation
Not available: 00h
Byte 58
Psi T-A PLL
Thermal resistance of PLL device package from top (case) to ambient (Psi T-A PLL)
Not available: 00h
Byte 59
Psi T-A Register
Thermal resistance of register device package from top (case) to ambient (Psi T-A Register)
Mot available: 00h
Byte 60
DT PLL Active
Case temperature rises from ambient due to PLLin active mode atVCC = 1.9 V the PLL loading is the DIMM loading
Not available: 00h
Byte 61
DT Register Active/Mode Bit
Bits 7:1: Case temperature rises from ambient due to register in active mode at VCC = 1.9 V,
the register loading is the RDIMM loading. Bit 0: mode bit to specify register data output toggle rate 50% or 100%
Not available: 00h
Byte 62
SPD Data Revision Code
Revision 1.0: 10h Revision 1.1: 11 h Revision 1.2: 12h
Byte 63
Checksum for Byte 0 to 62
Checksum is calculated and placed into this byte. All CST testers have automatic checksum calculation for this byte.
All you have to do is to fill in and audit byte 0-62, the tester will automatically fill in byte 63 for you
through the auto-checksum calculation.
Byte 64-71
Manufacturer’s JEDEC ID Code
This is a code obtained through manufacturer’s registration with JEDEC ( the standard setting committee).
A small fee is charged by JEDEC to support and maintain this record. Please contact JEDEC office.
Byte 64 is the most significant byte. If the ID is not larger then one byte (in hex), byte 65-71 should be
filled with 00h.
Byte 72
Module manufacturing Location
Optional manufacturer assigned code.
Byte 73-90
Module Part Number
Optional manufacturer assigned part number.
The manufacturer’s part number is written in ASCII format within these bytes. Byte 73 is the most
significant digit in ASCII while byte 90 is the least significant digit in ASCII. Unused digits are
coded as ASCII blanks (20h).
Byte 91-92
Module Revision Code
Optional manufacturer assigned code.
Byte 93-94
Module Manufacturing Date
Byte 93 is the year: 2005 69h 2006 6Ah 2007 6Bh
Byte 94 is the week of the year: wk1-wk15 01h – 0Fh
wk16-wk31 10h – 1Fh
wk32-wk47 20h – 2Fh
wk48-wk52 30h – 34h
Byte 95-98
Module Serial Number
Optional manufacturer assigned number.
On the serial number setting, JEDEC has no specification on the data format nor dictates
the location of Most Significant Bit. Therefore, it’s up to individual manufacturer to
assign his numbering system. All CST testers and EZ-SPD programmers have the option for
user to select either byte 95 or byte 98 as the MSB (most significant bit). The testers
assume the use of ASCII format; which is the most commonly used. The CST testers also have
the function to automatically increment the serial number on each module tested.
Byte 99-127
Manufacturer’s Specific Data
Optional manufacturer assigned data.
Byte 128-255
Open for Customer Use
Optional for any information codes.
Final Note:
Everything in the above article and more are now implemented into the CST EZ-SPD DDR2
Programmer software. The new features are:
1. Pop up window of explanation on each Byte.
2. Clickable selection right from the illustration window.
3. Auto checksum on byte 62.
4. Text input on "manufacturer code" and "serial number". User define MSB/LSB format.
5. Auto JEDEC week and year coding from PC clock.
6. Software write protect function.
.....just to name a few.
For further information, please view : www.simmtester.com
DDR2 SPD table reference from Micron Technology
Byte 21- 27
Byte 28 -40
Byte 41 - 63
Byte 64- 127
2010年8月18日 星期三
定錨效應: 為什麼星巴克(Starbucks)咖啡的小中大杯要叫Short、Tall、Grande、venti
http://readforjoy.blogspot.com/2009/02/starbucksgrandelarge.html
為什麼星巴克(Starbucks)咖啡的小中大杯要叫Short、Tall、Grande,而不是small、medium、large?
當你買東西時,如果要殺價,你應該先開價,還是讓老闆先開價?
不要用任何計算工具,在5秒內估算1 X 2 X 3 X 4 X 5 X 6 X 7 X 8等於多少?然後在一旁寫下答案。
這三個問題都跟人的非理性反應——定錨效應(anchoring effect)有關。
一乘到八的正確答案是40320。大多數人的計算結果都會低估很多。給一些高中生做這個題目,他們估算出的平均數是512。
但是當題目的改寫成8 X 7 X 6 X 5 X 4 X 3 X 2 X 1時,換另一群智力相當的高中生來估算,他們估算出來的平均值就提高到2250。
這正是「定錨效應」導致的結果。說定錨效應你也許比較陌生,但是「第一印象」大家應該很清楚。第一印象就是一種可以定位的「錨」,一旦定下來,後面接受的資訊常常會受到這個「錨」的影響,而且很多情況下是你沒有察覺的。即使你會儘量根據新的資訊來調整自己的判斷,但是這種調整往往是不充分的,最後你的判斷仍舊很難逃第一印象的範圍。(《別當正常的傻瓜:避免正常人的錯誤,成為超凡的決策者How To Make Smart Decisions In Business And Life》,初版頁138)
在一乘到八的題目,兩群高中生的估算值有如此大的差距,正是受到題目一開始的數字所影響。
那麼購物殺價,跟定錨效應又有什麼關係呢?關鍵就在於,你要先開價讓價位變成1 X 2 X 3……,不要讓老闆先開價變成8 X 7 X 6……。此外,開的價位要越極端越好。不過,為了避免激怒老闆,開價前要先提醒對方,你會開離譜的價格,但是可以討價還價。
同樣地,如果你要賣東西,也是可以利用定錨效應。請看底下臺灣駐印度人員的親身經歷。
一定要記著,在印度你就是老外,你的東方臉孔上,清楚的寫著「我是肥羊」,在人家的土地上,這不是你所能改變的事實;你走在街上,可能是沿路滿街商家心目中的白痴大戶;來打招呼的方式無奇不有:有個人說我家的狗是他的好朋友,可是我在印度根本沒養過狗呀!……
有一次,國內同事難得到印度出差,想買幾個紀念品做個人情。興致一來,驅車逛到Janpath路上的商街市場。……
昏暗的燈光下,矇矓的眼忽然間掃到一批皮製的駿馬,據印度朋友說過印度的皮製品評價還不錯,正當內心掙扎著要不要買的時候,店家果然有做生意的資質,馬上意會到我眼神後的心思,攔著我,叫嚷道:「Only for you,3000盧比,特價喔!」我轉頭不理,隨口回他一句:「騙子!」卻讓他心花怒發,才跨了五步,接著說:「今天是開張紀念,就算您2500盧比(當時臺幣約2400元)好了,要不要?」說實話,在國內一件上好的「躍馬中原」立式皮製駿馬,沒有5、6千臺幣恐怕是買不到的,這種價格對臺灣客人而言多半認為已是物超所值了。
老闆先開價,而且是個極端的高價。此外,老闆主動降價,向顧客表明可以討價還價。
但當時我知道我不能心軟,必須勇敢向前,絕對不能回頭,否則就要上當了,又頂了一句:「不要騙我,我住印度。」表明我不是觀光客,請不要敲我竹槓,敲我也是白費力氣,但鍥而不捨的店家馬上又自動減價兩次,喊到1500盧比;「再減吧!」沒想到我自言自言的念著,又值500元,真是字字千金喔;又假裝不耐煩的樣子,向店家說:「我不買!請不要煩我!」可是很有毅力的印度人,又再一次阿莎力地降到了500盧比,睜大了雙眼望著我。
我笑笑回答:「算了,我知道價錢,你要多少錢賣我呢?」那個商人狐疑地想了一下說:「那麼120元成交可以嗎?」我得意地搖手說:「不行不行。」便作勢要走,這店家好不容易釣到了一頭大魚,絕不會輕言善罷干休,拉著我的衣服,央求說:「Mister,不要走!100塊是我的最低價錢,請您可憐可憐我,買幾個吧!」
不知道是砍價砍到受不了罪惡感的譴責,一時心軟一口氣買了四匹,滿心歡喜地抱回家,但在進門的當頭,又碰到準備要出門的房東,並秀一下今天的戰利品,但房東隨口回了一句:「噢!這匹馬我也買過耶,一匹才50塊,你也很識貨喔!」(《印度崛起》第一章 印度的夢,由誰來築?)
那麼,星巴克(Starbucks)咖啡的小中大杯叫Short、Tall、Grande,又跟定錨效應有什麼關係?
舒茲(Howard Shultz)創立星巴克(Starbucks)時,和阿賽爾一樣(James Assael)是個有生意頭腦的人。他努力地讓星巴克和其他咖啡店有所不同,不是用價格,而是用氣氛。他一開始設計星巴克時,就刻意讓它感覺起來像是歐陸的咖啡館。
讓星巴克感覺像歐陸的咖啡館?星巴克現在應該是美式咖啡館的象徵吧?
早期的星巴克咖啡店瀰漫著烘焙咖啡豆的香味,而且它們的咖啡豆品質優於Dunkin' Donuts甜甜圈店的咖啡豆。它們販售花俏的法式濾壓壺,櫥櫃裡展示著杏仁可頌(almond croissants)、義式脆烤餅(biscotti)、小紅莓蛋奶酥(raspberry custard pastries)等誘人的點心。
Dunkin' Donuts甜甜圈店賣的咖啡分大(large)、中(medium)、小(small)杯,在星巴克,不同份量的咖啡稱做Short、Tall、 Grande和Venti,用的是Caffe Americano(美式咖啡)、Caffe Misto(密斯朵)、Macchiato(瑪奇朵)、Frappuccino(星冰樂)等高級名稱。
星巴克竭盡所能,凡事都要創造不同的顧客體驗,讓感受的差異大到顧客不會用Dunkin' Donuts甜甜圈店的價格作為定錨點(anchor),反而接納星巴克為我們準備的新定錨點。這是星巴克成功的主要秘訣。(《誰說人是理性的!Predictably Irrational: The Hidden Forces That Shape Our Decisions》頁60)
再想到華碩(Asus)將Eee PC定位在「低價」電腦,讓自己陷身在價格競爭中,更覺得星巴克跟蘋果電腦(Apple,當市面上有一堆MP3隨身聽時,人家就是有辦法讓自家推出的東西被特別地叫做iPod。當然價位也是特別的。)建立品牌策略的厲害。
一山還有一山高。原本賣不出去的東西,甚至可以利用定錨效應,變成高價的搶手貨。
1973 年的某天,珍珠王薩爾瓦多‧阿賽爾(Salvador Assael)把他的遊艇停泊在法國的聖托貝(Saint-Tropes),而帥氣瀟灑的法國年輕人布魯耶(Jean-Claude Brouillet)也在這時從鄰船上岸。布魯耶剛剛賣掉他的航空事業,用獲利在法屬波里尼西亞買下一座環礁島,這是專屬於他和他那大溪地年輕妻子的藍色珊瑚礁天堂。
布魯耶說,那座島的碧綠海水裡,到處都是黑蝶貝這種黑唇牡蠣。就在那些牡蠣的黑色唇肉之間,藏著讓人眼睛一亮的東西:黑珍珠。
當時大溪地黑珍珠還沒有市場,需求也很小。但是布魯耶說服了薩爾瓦多‧阿賽爾和他一起合作採收黑珍珠,把它賣到世界各地。起初,阿賽爾的銷售工作遭遇挫敗。這些珍珠呈鐵灰色,大約是毛瑟槍子彈大小,而他一樁生意也沒有做成,只好黯然返回波里尼西亞。
阿賽爾大可以一股腦把所有黑珍珠都丟棄,或是賤賣給折扣商店,他也可以用一些白珍珠搭配這些黑珍珠,想辦法把它們賣給消費者。但是阿賽爾沒有這麼做,他等了一年,等到生產出一些較優質的樣本,然後讓身為傳奇珠寶商的老朋友溫斯頓(Harry Winston)看看這些黑珍珠。
溫斯頓同意把這些黑珍珠放在他位於紐約第五大道的商店櫥窗裡展示,並標上天價。同時,阿賽爾也在最時髦高檔的雜誌上刊登了一則全頁廣告。廣告的畫面裡有一堆零散放置的鑽石、紅寶石和綠寶石,襯托著一串閃閃發亮的大溪地黑珍珠。
這些珍珠,不久之前還藏於玻里尼西亞海中的黑牡蠣裡,現在卻貼著紐約市闊綽名媛的粉頸,穿梭於曼哈頓的街道。阿賽爾把價值令人存疑的東西變成令人驚嘆的絕世精品。(《誰說人是理性的!》頁42)
某些高價的化妝品,也是利用相同的品牌策略變成「高價」。
要克服定錨效應,首先要克服過度自信,去懷疑自己的第一判斷,接受新的資訊去修正自己的判斷。其次要明瞭「兼聽則明,偏信則暗」的道理,綜合各方面的建議,這樣才能使產生的「錨」不會有太大的偏差。如果只接受一面之詞,正好反映出人們偏好肯定性意見這一弱點。要記住:忠言逆耳利於行!(《別當正常的傻瓜》,初版頁149)
定錨效應的影響有多深遠?或許可以想一想為什麼天然鑽石跟人工鑽石的價格差這麼多?
為什麼星巴克(Starbucks)咖啡的小中大杯要叫Short、Tall、Grande,而不是small、medium、large?
當你買東西時,如果要殺價,你應該先開價,還是讓老闆先開價?
不要用任何計算工具,在5秒內估算1 X 2 X 3 X 4 X 5 X 6 X 7 X 8等於多少?然後在一旁寫下答案。
這三個問題都跟人的非理性反應——定錨效應(anchoring effect)有關。
一乘到八的正確答案是40320。大多數人的計算結果都會低估很多。給一些高中生做這個題目,他們估算出的平均數是512。
但是當題目的改寫成8 X 7 X 6 X 5 X 4 X 3 X 2 X 1時,換另一群智力相當的高中生來估算,他們估算出來的平均值就提高到2250。
這正是「定錨效應」導致的結果。說定錨效應你也許比較陌生,但是「第一印象」大家應該很清楚。第一印象就是一種可以定位的「錨」,一旦定下來,後面接受的資訊常常會受到這個「錨」的影響,而且很多情況下是你沒有察覺的。即使你會儘量根據新的資訊來調整自己的判斷,但是這種調整往往是不充分的,最後你的判斷仍舊很難逃第一印象的範圍。(《別當正常的傻瓜:避免正常人的錯誤,成為超凡的決策者How To Make Smart Decisions In Business And Life》,初版頁138)
在一乘到八的題目,兩群高中生的估算值有如此大的差距,正是受到題目一開始的數字所影響。
那麼購物殺價,跟定錨效應又有什麼關係呢?關鍵就在於,你要先開價讓價位變成1 X 2 X 3……,不要讓老闆先開價變成8 X 7 X 6……。此外,開的價位要越極端越好。不過,為了避免激怒老闆,開價前要先提醒對方,你會開離譜的價格,但是可以討價還價。
同樣地,如果你要賣東西,也是可以利用定錨效應。請看底下臺灣駐印度人員的親身經歷。
一定要記著,在印度你就是老外,你的東方臉孔上,清楚的寫著「我是肥羊」,在人家的土地上,這不是你所能改變的事實;你走在街上,可能是沿路滿街商家心目中的白痴大戶;來打招呼的方式無奇不有:有個人說我家的狗是他的好朋友,可是我在印度根本沒養過狗呀!……
有一次,國內同事難得到印度出差,想買幾個紀念品做個人情。興致一來,驅車逛到Janpath路上的商街市場。……
昏暗的燈光下,矇矓的眼忽然間掃到一批皮製的駿馬,據印度朋友說過印度的皮製品評價還不錯,正當內心掙扎著要不要買的時候,店家果然有做生意的資質,馬上意會到我眼神後的心思,攔著我,叫嚷道:「Only for you,3000盧比,特價喔!」我轉頭不理,隨口回他一句:「騙子!」卻讓他心花怒發,才跨了五步,接著說:「今天是開張紀念,就算您2500盧比(當時臺幣約2400元)好了,要不要?」說實話,在國內一件上好的「躍馬中原」立式皮製駿馬,沒有5、6千臺幣恐怕是買不到的,這種價格對臺灣客人而言多半認為已是物超所值了。
老闆先開價,而且是個極端的高價。此外,老闆主動降價,向顧客表明可以討價還價。
但當時我知道我不能心軟,必須勇敢向前,絕對不能回頭,否則就要上當了,又頂了一句:「不要騙我,我住印度。」表明我不是觀光客,請不要敲我竹槓,敲我也是白費力氣,但鍥而不捨的店家馬上又自動減價兩次,喊到1500盧比;「再減吧!」沒想到我自言自言的念著,又值500元,真是字字千金喔;又假裝不耐煩的樣子,向店家說:「我不買!請不要煩我!」可是很有毅力的印度人,又再一次阿莎力地降到了500盧比,睜大了雙眼望著我。
我笑笑回答:「算了,我知道價錢,你要多少錢賣我呢?」那個商人狐疑地想了一下說:「那麼120元成交可以嗎?」我得意地搖手說:「不行不行。」便作勢要走,這店家好不容易釣到了一頭大魚,絕不會輕言善罷干休,拉著我的衣服,央求說:「Mister,不要走!100塊是我的最低價錢,請您可憐可憐我,買幾個吧!」
不知道是砍價砍到受不了罪惡感的譴責,一時心軟一口氣買了四匹,滿心歡喜地抱回家,但在進門的當頭,又碰到準備要出門的房東,並秀一下今天的戰利品,但房東隨口回了一句:「噢!這匹馬我也買過耶,一匹才50塊,你也很識貨喔!」(《印度崛起》第一章 印度的夢,由誰來築?)
那麼,星巴克(Starbucks)咖啡的小中大杯叫Short、Tall、Grande,又跟定錨效應有什麼關係?
舒茲(Howard Shultz)創立星巴克(Starbucks)時,和阿賽爾一樣(James Assael)是個有生意頭腦的人。他努力地讓星巴克和其他咖啡店有所不同,不是用價格,而是用氣氛。他一開始設計星巴克時,就刻意讓它感覺起來像是歐陸的咖啡館。
讓星巴克感覺像歐陸的咖啡館?星巴克現在應該是美式咖啡館的象徵吧?
早期的星巴克咖啡店瀰漫著烘焙咖啡豆的香味,而且它們的咖啡豆品質優於Dunkin' Donuts甜甜圈店的咖啡豆。它們販售花俏的法式濾壓壺,櫥櫃裡展示著杏仁可頌(almond croissants)、義式脆烤餅(biscotti)、小紅莓蛋奶酥(raspberry custard pastries)等誘人的點心。
Dunkin' Donuts甜甜圈店賣的咖啡分大(large)、中(medium)、小(small)杯,在星巴克,不同份量的咖啡稱做Short、Tall、 Grande和Venti,用的是Caffe Americano(美式咖啡)、Caffe Misto(密斯朵)、Macchiato(瑪奇朵)、Frappuccino(星冰樂)等高級名稱。
星巴克竭盡所能,凡事都要創造不同的顧客體驗,讓感受的差異大到顧客不會用Dunkin' Donuts甜甜圈店的價格作為定錨點(anchor),反而接納星巴克為我們準備的新定錨點。這是星巴克成功的主要秘訣。(《誰說人是理性的!Predictably Irrational: The Hidden Forces That Shape Our Decisions》頁60)
再想到華碩(Asus)將Eee PC定位在「低價」電腦,讓自己陷身在價格競爭中,更覺得星巴克跟蘋果電腦(Apple,當市面上有一堆MP3隨身聽時,人家就是有辦法讓自家推出的東西被特別地叫做iPod。當然價位也是特別的。)建立品牌策略的厲害。
一山還有一山高。原本賣不出去的東西,甚至可以利用定錨效應,變成高價的搶手貨。
1973 年的某天,珍珠王薩爾瓦多‧阿賽爾(Salvador Assael)把他的遊艇停泊在法國的聖托貝(Saint-Tropes),而帥氣瀟灑的法國年輕人布魯耶(Jean-Claude Brouillet)也在這時從鄰船上岸。布魯耶剛剛賣掉他的航空事業,用獲利在法屬波里尼西亞買下一座環礁島,這是專屬於他和他那大溪地年輕妻子的藍色珊瑚礁天堂。
布魯耶說,那座島的碧綠海水裡,到處都是黑蝶貝這種黑唇牡蠣。就在那些牡蠣的黑色唇肉之間,藏著讓人眼睛一亮的東西:黑珍珠。
當時大溪地黑珍珠還沒有市場,需求也很小。但是布魯耶說服了薩爾瓦多‧阿賽爾和他一起合作採收黑珍珠,把它賣到世界各地。起初,阿賽爾的銷售工作遭遇挫敗。這些珍珠呈鐵灰色,大約是毛瑟槍子彈大小,而他一樁生意也沒有做成,只好黯然返回波里尼西亞。
阿賽爾大可以一股腦把所有黑珍珠都丟棄,或是賤賣給折扣商店,他也可以用一些白珍珠搭配這些黑珍珠,想辦法把它們賣給消費者。但是阿賽爾沒有這麼做,他等了一年,等到生產出一些較優質的樣本,然後讓身為傳奇珠寶商的老朋友溫斯頓(Harry Winston)看看這些黑珍珠。
溫斯頓同意把這些黑珍珠放在他位於紐約第五大道的商店櫥窗裡展示,並標上天價。同時,阿賽爾也在最時髦高檔的雜誌上刊登了一則全頁廣告。廣告的畫面裡有一堆零散放置的鑽石、紅寶石和綠寶石,襯托著一串閃閃發亮的大溪地黑珍珠。
這些珍珠,不久之前還藏於玻里尼西亞海中的黑牡蠣裡,現在卻貼著紐約市闊綽名媛的粉頸,穿梭於曼哈頓的街道。阿賽爾把價值令人存疑的東西變成令人驚嘆的絕世精品。(《誰說人是理性的!》頁42)
某些高價的化妝品,也是利用相同的品牌策略變成「高價」。
要克服定錨效應,首先要克服過度自信,去懷疑自己的第一判斷,接受新的資訊去修正自己的判斷。其次要明瞭「兼聽則明,偏信則暗」的道理,綜合各方面的建議,這樣才能使產生的「錨」不會有太大的偏差。如果只接受一面之詞,正好反映出人們偏好肯定性意見這一弱點。要記住:忠言逆耳利於行!(《別當正常的傻瓜》,初版頁149)
定錨效應的影響有多深遠?或許可以想一想為什麼天然鑽石跟人工鑽石的價格差這麼多?
訂閱:
文章 (Atom)